

ABN 91 006 855 689

SOIL TESTING & GEOTECHNICAL CONSULTANTS

ACN 006 855 689

# A REPORT ON THE SOIL INVESTIGATION AND PAVEMENT DESIGN FOR

# LOT 914 DP756961 PITMAN AVENUE

# BURONGA

**Report Nº: 3190369-2 Issue 2** 

# TABLE OF CONTENTS

| 1 | INTR | RODUCTION:                                   | 4 |
|---|------|----------------------------------------------|---|
|   | 1.1  | Аім                                          | 4 |
|   | 1.2  | STATEMENT OF EXPECTED PAVEMENT PERFORMANCE   | 4 |
| 2 | SOU  | RCE OF INFORMATION:                          | 5 |
| 3 | INVE | STIGATION:                                   | 5 |
|   | 3.1  | FIELD WORK                                   | 5 |
|   | 3.2  | Field Work<br>Laboratory Work                | 5 |
| 4 | FIND | DINGS:                                       | 6 |
|   | 4.1  | FIELD WORK<br>LABORATORY WORK                | 6 |
|   | 4.2  | LABORATORY WORK                              | 6 |
| 5 | DES  | IGN SUBGRADE VALUE AND SUBGRADE DELINEATION: | 6 |
| 6 | TRA  | FFIC LOADINGS:                               | 6 |
| 7 | DISC | CUSSION:                                     | 6 |
| 8 | REC  | OMMENDATIONS:                                | 7 |
|   | 8.1  | FLEXIBLE PAVEMENTS:                          | 7 |

- APPENDIX A SITE PLAN
- **APPENDIX B LOGS OF BORING**
- **APPENDIX C ENGINEERING DATA**

| CLIENT        | : | Far West Local Health District<br>PO Box 457<br>BROKEN HILL NSW 2880                                                                                                                                                                                                                  |
|---------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUTHORISED BY | : | Ms Anya Isarotaikul                                                                                                                                                                                                                                                                   |
| PROJECT       | : | Lot 914 DP756961 Pitman Avenue<br>BURONGA                                                                                                                                                                                                                                             |
| COMMISSION    | : | Carry out appropriate insitu soil tests and observations at three locations as shown on the attached plan (Appendix A).                                                                                                                                                               |
|               |   | Recommend a pavement composition for the carpark and<br>service roads in accordance with the method outlined in<br>AUSTROADS (2012): 'Guide to Pavement Technology Part<br>2: Pavement Structural Design' using the indicative traffic<br>loading provided in the above design guide. |

#### 1 INTRODUCTION:

### 1.1 Aim

This report discusses the field investigation carried out on 31 July 2019 and the subsequent laboratory tests for the proposed construction of the carpark and service road.

The report closes with a recommendation for the pavement composition and any other treatment that may be appropriate for the construction process based on the field and laboratory data.

#### **1.2 Statement of Expected Pavement Performance**

The pavements recommended in this report have been designed using state of the art technology in pavement design. The essential part of the design is to ensure that each layer within the pavement is compatible - in terms of characteristics and strength - with those of the adjacent layers, so that the overall pavement performance criteria can be met. The pavements recommended in this report may not meet specific standardisation requirements of some local authorities and therefore such standard pavements may not be applicable for the project reported on herein.

It is expected that the subgrade will exhibit a characteristic deflection - that is a rebound deflection of the mean plus 1.5 times the standard deviation - of up to 4mm on completion of preparation as detailed. It is also expected that prior to asphalting the base course will have similar deflections of up to 2mm after preparation.

The pavement has been designed for a theoretical life of 20 years based on the traffic loadings nominated. At the end of its life, a pavement is expected to have deviations (ruts) and surface cracking (crazing).

#### 2 SOURCE OF INFORMATION:

- 2.1 Civiltest Pty Ltd Field and Laboratory data collected and recorded.
- 2.2 AUSTROADS (2012): 'Guide to Pavement Technology Part 2: Pavement Structural Design'

#### **3** INVESTIGATION:

#### 3.1 Field Work

The field work was carried out on 31 July 2019 by mechanically augering test bores at the approximate locations as shown on the attached plan (Appendix A).

California Bearing Ratio (CBR) values were obtained at each bore site using a 9kg Dynamic Cone. Insitu moisture contents were also obtained throughout each bore to assist in the assessment of the CBR values.

Insitu moisture contents were determined on the bulk samples.

All the field data is presented on the logs of boring (Appendix B).

#### 3.2 Laboratory Work

Representative subgrade samples of the predominant subgrade material types were remoulded in a CBR mould using standard compactive effort at approximately the optimum moisture content. The samples were then soaked for four days under a 4.5kg surcharge before being tested to determine the laboratory soaked CBR value.

Classification tests (Plasticity Index and Sieve Analysis) were carried out on the predominant subgrade material types to assess the reactivity and the drainage characteristics for the site.

All the laboratory data is attached (Appendix C).

### 4 FINDINGS:

### 4.1 Field Work

The test bores revealed that the existing soil profile consisted of SAND FILL overlying the naturally occurring clayey SAND.

The insitu CBR values - determined using a 9kg dynamic cone - of the subgrade material ranged from 8.0% to 22.2% at insitu moisture contents of 6.1% and 6.0% respectively. There was no correlation between the insitu moisture contents and CBR values in the field at this site.

### 4.2 Laboratory Work

| Test<br>Pit<br>No. | Material<br>Description | Sample<br>No. | CBR<br>% | Density<br>t/m³ | Moisture<br>% | Reactivity | PI<br>%        | %Pass<br>0.075mm |
|--------------------|-------------------------|---------------|----------|-----------------|---------------|------------|----------------|------------------|
| 1                  | SAND                    | 193-4094A     | 12       | 1.89            | 11.0          | Low        | 7              | 28               |
| 2                  | Clayey SAND             | 193-4094D     | 20       | 1.89            | 12.0          | Low        | 7              | 30               |
| 3                  | SAND                    | 193-4094G     | 25       | 1.81            | 10.0          | Low        | Non<br>Plastic | 12               |

The results of the laboratory tests are set out in the table below:

### 5 DESIGN SUBGRADE VALUE AND SUBGRADE DELINEATION:

After reviewing the soil profiles in the field and the laboratory test results, it was considered that a subgrade design CBR value of 8.0% should be adopted for clayey SAND subgrade materials for the pavements in this project.

### 6 TRAFFIC LOADINGS:

In the absence of site specific traffic data, the following traffic loading has been obtained from Table 12.2 of AGPT02 AUSTROADS (2012) 'Guide to Pavement Technology Part 2: Pavement Structural Design'. Using the case of 'Local access in industrial area', a maximum design loading of  $1.5 \times 10^5$  Equivalent Standard Axles (ESA) has been adopted. The receiver of the report should check if the assumption made in regards to the design traffic loading is correct. Civiltest Pty Ltd should be contacted if the design traffic loading differs, so that a review of the recommendations can be made.

### 7 DISCUSSION:

It has been established that the subgrade design CBR value is 8.0% and the design traffic loading is  $1.5 \times 10^5$  Equivalent Standard Axles (ESA). Therefore, for a 95% reliability level in pavement performance, the overall pavement depth should be 300mm.

## 8 **RECOMMENDATIONS:**

## 8.1 Flexible Pavements:

|                             |                                                  | Depth 00mm |
|-----------------------------|--------------------------------------------------|------------|
| WEARING COURSE (40mm thick) | AC 10mm                                          |            |
|                             |                                                  | 40mm       |
| 7mm Low Cutter Seal         |                                                  |            |
| BASE                        | DGB                                              |            |
| (120mm thick)               | Compacted to not less than 98% of AS 1289, 5.2.1 |            |
|                             | (Modified Compaction)                            |            |
|                             |                                                  | 160mm      |
| SUBBASE                     | DGS40 Compacted to not                           |            |
| (140mm thick)               | less than 95% of AS 1289,                        |            |
|                             | 5.2.1 (Modified Compaction)                      | 200.00     |
|                             | Mate false false l                               | 300mm      |
| SUBGRADE                    | Material as found                                |            |
|                             | Compacted to 95% of                              |            |
|                             | AS 1289 5.1.1 (Standard                          |            |
|                             | Compaction) at a moisture                        |            |
|                             | content between 90% and                          |            |
|                             | 120% of Optimum Moisture                         |            |
|                             | Content for a depth of<br>150mm                  |            |

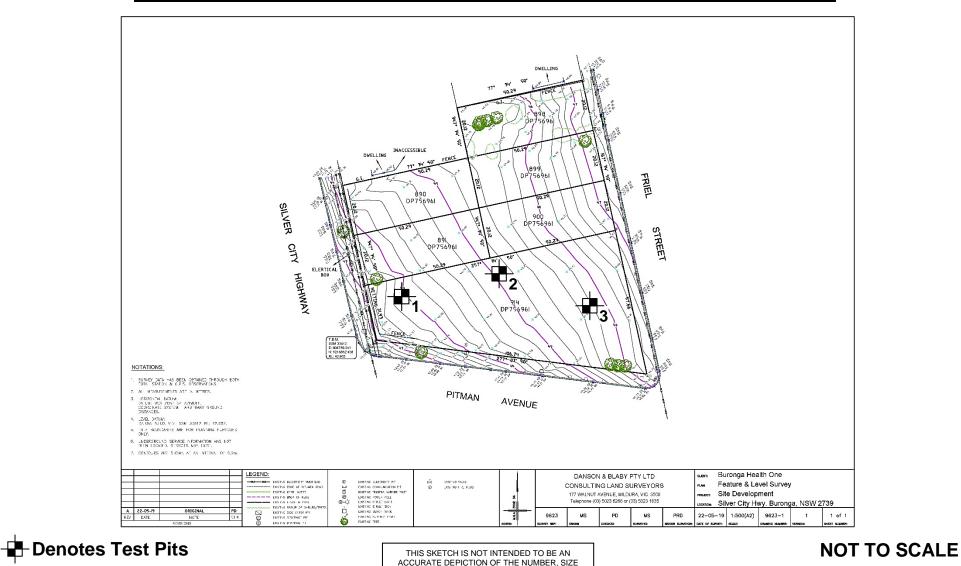
#### 8. **RECOMMENDATIONS (CONT.)**:

The above recommendations have been made based on (I) the field investigations for the project, (2) the laboratory work detailed within this report, (3) information received from the client and (4) information from the references mentioned in Section 2. SOURCE OF INFORMATION. Therefore if it is found that during construction, conditions differ widely to those described in this report or information received is found to be incorrect, then the recommendations made in this report may need to be amended.

The recommendations given in this report have been based largely on the soil conditions encountered at the time of the field investigation. Under inclement weather or prolonged wet weather conditions, the soil conditions noted and reported in this report could vary. It is advisable to undertake construction during and following good weather conditions - i.e., dry weather conditions - <u>not</u> during or following inclement weather or prolonged wet weather conditions.

It is also assumed that the pavements will be using established sound engineering practices by a contractor experienced in this field of work using purpose built equipment.

Zhan Tang Geotechnical Engineer CIVILTEST PTY LTD


**REF:** RG/LG/YW/ZT/JY/hj

30 August 2019

**AMENDMENT:** This report was first issued on 26 August 2019. Sections of this report were amended on 30 August 2019 and consequently this revised report now takes precedence over any previously dated report.

# **APPENDIX A**

SITE PLAN



#### LOCATION OF TEST SITES: LOT 914 DP756961 PITMAN AVENUE BURONGA

OR LOCATION OF TREES AND/OR SHRUBS

# **APPENDIX B**

LOGS OF BORING

| -DOC-001-011-SD | 2     | ISSUE # 6 - 22 Jan | uary 2015    | TEST PIT 1                          |
|-----------------|-------|--------------------|--------------|-------------------------------------|
| Field           | Depth | Soil               | Field C.B.R. | Test Methods                        |
| Moisture        |       | Class              |              | Moisture content: AS 1289.2.1.1     |
| Content (%)     | (m)   |                    |              | 60 DCP CBR: AS 1289.6.3.2, RC 402.0 |
|                 |       |                    | 0            | SAND trace clay FILL                |
|                 | 0.100 |                    |              | I Brown, Moist, Medium dense ↓      |
|                 | 0.100 |                    | 100          | SAND, trace clay                    |
|                 |       |                    |              | With limestone                      |
|                 |       |                    | 200          |                                     |
|                 |       |                    |              | Brown                               |
|                 |       |                    | 300          | Moist                               |
|                 |       |                    |              | Medium dense                        |
|                 |       |                    |              |                                     |
|                 |       |                    | 400          | -                                   |
|                 |       |                    |              |                                     |
| 5.0             | 0.500 |                    | 500          | -                                   |
|                 |       |                    |              |                                     |
|                 |       |                    | 600          | -                                   |
|                 |       |                    |              |                                     |
|                 |       |                    | 700          | _                                   |
|                 |       |                    |              |                                     |
|                 |       |                    | 800          |                                     |
|                 |       |                    | 300          |                                     |
|                 |       |                    |              |                                     |
|                 |       |                    | 900          |                                     |
| 5.1             | 1.000 |                    |              |                                     |
|                 |       |                    | 1000         | -                                   |
|                 |       |                    |              |                                     |
|                 |       |                    | 1100         | -                                   |
|                 |       |                    |              |                                     |
|                 |       |                    | 1200         | _                                   |
|                 |       |                    |              |                                     |
|                 |       | • • •              | 1300         |                                     |
|                 |       |                    |              |                                     |
|                 |       | • • •              |              |                                     |
|                 |       |                    | 1400         | 1                                   |
|                 | 4 500 | • • •              |              |                                     |
|                 | 1.500 | ┣────┨│            | 1500         |                                     |
|                 |       |                    |              | END OF BORE (31-07-19)              |

| CIVILTEST P<br>Soil Testing & G |       | al Consultar | ENGINEERING LOG | Report Number: 3190369-2            |
|---------------------------------|-------|--------------|-----------------|-------------------------------------|
| SSUE # 6 - 22 Janua             |       | ai consultai | 13              | TEST PIT 2                          |
| Field                           | Depth | Soil         | Field C.B.R.    | Test Methods                        |
| Moisture                        | -     | Class        |                 | Moisture content AS 1289.2.1.1      |
| Content (%)                     | (m)   |              |                 | 60 DCP CBR: AS 1289.6.3.2, RC 402.0 |
|                                 |       |              | 0               | SAND, trace clay FILL               |
|                                 | 0.100 |              |                 | Brown, Moist, Medium dense          |
|                                 | 0.100 |              | 100             |                                     |
|                                 |       |              |                 | SAND, clayey                        |
|                                 |       |              |                 | With limestone                      |
|                                 |       |              | 200             | Brown                               |
|                                 |       |              |                 | Moist                               |
|                                 |       |              | 300             | Medium dense                        |
|                                 |       |              |                 | Imedium dense                       |
|                                 |       |              |                 |                                     |
|                                 |       | _            | 400             | -                                   |
|                                 |       |              |                 |                                     |
| 6.1                             | 0.500 |              | 500             |                                     |
|                                 | 0.000 |              | 300             |                                     |
|                                 |       | • • •        |                 |                                     |
|                                 |       |              | 600             | -                                   |
|                                 |       |              |                 |                                     |
|                                 | 0.700 |              |                 |                                     |
|                                 |       |              | 700             | SAND, clayey, trace silt            |
|                                 |       |              |                 |                                     |
|                                 |       |              | 800             | Pale brown                          |
|                                 |       |              |                 | Moist                               |
|                                 |       |              |                 | Medium dense                        |
|                                 |       |              | 900             |                                     |
| 6.0                             | 1.000 |              |                 |                                     |
| 0.0                             | 1.000 |              | 1000            | -                                   |
|                                 |       |              |                 |                                     |
|                                 |       |              |                 |                                     |
|                                 |       |              | 1100            | -                                   |
|                                 |       |              |                 |                                     |
|                                 |       |              | 1200            |                                     |
|                                 |       |              |                 |                                     |
|                                 |       | • • •        |                 |                                     |
|                                 |       |              | 1300            | 1 1                                 |
|                                 |       |              |                 |                                     |
|                                 |       |              | 1400            |                                     |
|                                 |       |              |                 |                                     |
|                                 | 4 500 | • • •        |                 |                                     |
|                                 | 1.500 |              | 1500            |                                     |
|                                 |       |              |                 | END OF BORE (31-07-19)              |
|                                 |       |              |                 | ]                                   |
| Ref: RG/LG/hj                   |       |              |                 |                                     |

| oil Testing & C    |       | al Consultar  | nts              |             |               |    |                                                |
|--------------------|-------|---------------|------------------|-------------|---------------|----|------------------------------------------------|
| SUE # 6 - 22 Janua |       |               |                  |             |               |    | TEST PIT 3                                     |
| Field<br>Moisture  | Depth | Soil<br>Class |                  | Field C.B.R | •             |    | Test Methods<br>Moisture content AS 1289.2.1.1 |
| Content (%)        | (m)   | Class         | 0                | 10          | 20            | 30 | DCP CBR: AS 1289.6.3.2, RC 402.0               |
| (/)                | (,    |               | 0 <del>  -</del> |             |               |    | $\wedge$                                       |
|                    |       | • • •         |                  |             |               |    | SAND, trace clay FILL FILL                     |
|                    | 0.100 |               | 100              |             |               |    | Brown, Moist, Medium dense 🛛 🗸                 |
|                    |       |               | 100              |             |               |    | SAND, trace clay                               |
|                    |       |               |                  |             |               |    | Brown                                          |
|                    |       |               | 200              | -           |               | _  | Moist                                          |
|                    |       |               |                  |             |               |    | Medium dense                                   |
|                    |       |               | 300              |             |               |    |                                                |
|                    |       | •••           | 000              |             |               |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       | • • •         | 400              |             |               | _  |                                                |
|                    |       |               |                  |             |               |    |                                                |
| 5.6                | 0.500 |               | 500              |             |               |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       |               |                  |             | $\langle  $   |    |                                                |
|                    |       |               | 600              |             |               |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       | • • •         | 700 +            |             | ┥┤──          | _  |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       | • • •         | 800              |             |               |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       |               | 900              |             |               |    |                                                |
| 2.8                | 1.000 |               |                  |             |               |    |                                                |
|                    |       |               | 1000             |             |               | _  |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       | •••           | 1100             |             |               |    |                                                |
|                    |       |               | 1100             |             | Ň             |    |                                                |
|                    |       | • • •         |                  |             |               |    |                                                |
|                    |       |               | 1200             |             |               |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       |               | 1300             |             | $\rightarrow$ |    |                                                |
|                    |       |               |                  |             |               |    |                                                |
|                    |       |               | 1 400            |             |               |    |                                                |
|                    |       |               | 1400             |             |               |    |                                                |
|                    | 4 500 | • • •         |                  |             |               |    |                                                |
|                    | 1.500 |               | 1500 上           |             |               |    |                                                |
|                    |       |               |                  |             |               |    | END OF BORE (31-07-19)                         |
|                    |       |               |                  |             |               |    |                                                |
| Ref: RG/LG/hj      |       |               |                  |             |               |    |                                                |

# **APPENDIX C**

**ENGINEERING DATA** 

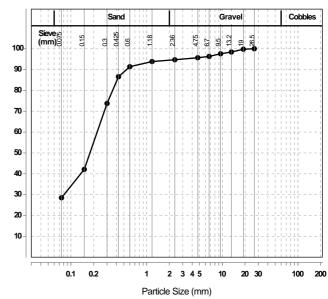
| Report Number:    | 3190369-3                                 |
|-------------------|-------------------------------------------|
| Issue Number:     | 1                                         |
| Date Issued:      | 07/08/2019                                |
| Client:           | Far West Local Health District            |
|                   | PO Box 457, BROKEN HILL NSW 2880          |
| Contact:          | Anya - Currie & Brown                     |
| Project Number:   | 3190369                                   |
| Project Name:     | Lot 914 Pitman Avenue BURONGA             |
| Project Location: | Lot 914 Pitman Avenue BURONGA             |
| Work Request:     | 4094                                      |
| Sample Number:    | 193-4094A                                 |
| Date Sampled:     | 31/07/2019                                |
| Dates Tested:     | 31/07/2019 - 02/08/2019                   |
| Sampling Method:  | AS1289 1.2.1 6.5.3 - Power auger drilling |
| Sample Location:  | TP1 (100mm-1500mm)                        |

| Sieve                  | Passed %      | Passing<br>Limits | I      | Retained % | Retai<br>Limits |     |
|------------------------|---------------|-------------------|--------|------------|-----------------|-----|
| 26.5 mm                | 100           |                   |        | 0          |                 |     |
| 19 mm                  | 100           |                   |        | 0          |                 |     |
| 13.2 mm                | 98            |                   |        | 1          |                 |     |
| 9.5 mm                 | 98            |                   |        | 1          |                 |     |
| 6.7 mm                 | 96            |                   |        | 1          |                 |     |
| 4.75 mm                | 96            |                   |        | 1          |                 |     |
| 2.36 mm                | 95            |                   |        | 1          |                 |     |
| 1.18 mm                | 94            |                   |        | 1          |                 |     |
| 0.6 mm                 | 91            |                   |        | 2          |                 |     |
| 0.425 mm               | 87            |                   |        | 5          |                 |     |
| 0.3 mm                 | 74            |                   |        | 13         |                 |     |
| 0.15 mm                | 42            |                   |        | 32         |                 |     |
| 0.075 mm               | 28            |                   |        | 14         |                 |     |
| Atterberg Lim          | nit (AS1289 3 | .1.2 & 3.2        | .1 & 3 | .3.1)      | Min             | Max |
| Sample Histo           | ory           |                   | C      | Oven Dried |                 |     |
| Preparation N          | Nethod        |                   |        | Dry Sieve  |                 |     |
| Liquid Limit (         | %)            |                   |        | 19         |                 |     |
| Plastic Limit (%)      |               |                   |        | 12         |                 |     |
| Plasticity Index (%) 7 |               |                   |        |            |                 |     |
| Linear Shrink          | age (AS1289   | 3.4.1)            |        |            | Min             | Max |
| Linear Shrink          | age (%)       |                   |        | 1.0        |                 |     |
| Crooking Cru           | mbling Curlin | a                 |        | Cracking   |                 |     |



6




WORLD RECOGNISED

Percent Passing

Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

Email: james@civiltest.com.au

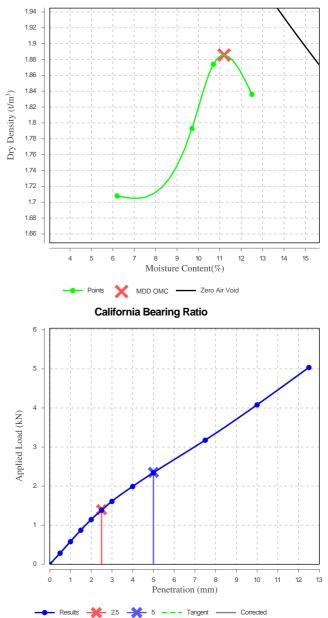
**Particle Size Distribution** 



| Report Number:    | 3190369-3                                 |
|-------------------|-------------------------------------------|
| Issue Number:     | 1                                         |
| Date Issued:      | 07/08/2019                                |
| Client:           | Far West Local Health District            |
|                   | PO Box 457, BROKEN HILL NSW 2880          |
| Contact:          | Anya - Currie & Brown                     |
| Project Number:   | 3190369                                   |
| Project Name:     | Lot 914 Pitman Avenue BURONGA             |
| Project Location: | Lot 914 Pitman Avenue BURONGA             |
| Work Request:     | 4094                                      |
| Sample Number:    | 193-4094A                                 |
| Date Sampled:     | 31/07/2019                                |
| Dates Tested:     | 31/07/2019 - 06/08/2019                   |
| Sampling Method:  | AS1289 1.2.1 6.5.3 - Power auger drilling |
| Sample Location:  | TP1 (100mm-1500mm)                        |

| Dry Density - Moisture Relationship (AS                                                                                                                                                                                                                                                                                                                                                                       | 1289 5.1.1 & 2.1                                                                                                | .1)              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Mould Type                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | MOULD A          |  |  |
| Compaction                                                                                                                                                                                                                                                                                                                                                                                                    | Star                                                                                                            | Standard         |  |  |
| No. Layers                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | 3                |  |  |
| No. Blows / Layer                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                               | 5                |  |  |
| Maximum Dry Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                       | 1.                                                                                                              | 89               |  |  |
| Optimum Moisture Content (%)                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                              | 1.0              |  |  |
| Retained on 19mm (%)                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                               | .4               |  |  |
| Oversize Sieve (mm)                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                               | 9                |  |  |
| Oversize Material Wet (%)                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                  |  |  |
| Oversize Material Dry (%)                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                  |  |  |
| Dry Oversize density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                  |  |  |
| Method used to Determine Plasticity                                                                                                                                                                                                                                                                                                                                                                           | Estin                                                                                                           | nated            |  |  |
| Curing Hours                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                  |  |  |
| Moisture Content (AS 1289 2.1.1)                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                  |  |  |
| Moisture Content (%)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 4.6              |  |  |
| California Bearing Ratio (AS 1289 6.1.1                                                                                                                                                                                                                                                                                                                                                                       | 8 2 1 1)                                                                                                        | Min Max          |  |  |
| Deaning Ratio (RO-1203 0.1.1                                                                                                                                                                                                                                                                                                                                                                                  | α Ζ. Ι. Ι)                                                                                                      | IVIIII IVIAX     |  |  |
| CBR taken at                                                                                                                                                                                                                                                                                                                                                                                                  | 5 mm                                                                                                            |                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                  |  |  |
| CBR taken at                                                                                                                                                                                                                                                                                                                                                                                                  | 5 mm                                                                                                            |                  |  |  |
| CBR taken at<br>CBR %                                                                                                                                                                                                                                                                                                                                                                                         | 5 mm<br>12                                                                                                      | ard              |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort                                                                                                                                                                                                                                                                                                                                                          | 5 mm<br><b>12</b><br>Standa                                                                                     | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD                                                                                                                                                                                                                                                                                                                          | 5 mm<br>12<br>Stand<br>AS 1289 5.1                                                                              | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity                                                                                                                                                                                                                                                                                   | 5 mm<br>12<br>Standa<br>AS 1289 5.1<br>Estima                                                                   | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                        | 5 mm<br>12<br>Standa<br>AS 1289 5.1<br>Estima<br>1.89                                                           | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)                                                                                                                                                                                                        | 5 mm<br><b>12</b><br>Stand:<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0                                            | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)                                                                                                                                                                        | 5 mm<br><b>12</b><br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5                                    | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)                                                                                                                                       | 5 mm<br><b>12</b><br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5<br>98.0                            | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)                                                                                                  | 5 mm<br><b>12</b><br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5<br>98.0<br>11.0                    | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)                                                                 | 5 mm<br>12<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5<br>98.0<br>11.0<br>13.4                   | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)                                          | 5 mm<br>12<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5<br>98.0<br>11.0<br>13.4<br>4.5            | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)<br>Soaking Period (days)                 | 5 mm<br>12<br>Stand:<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5<br>98.0<br>11.0<br>13.4<br>4.5<br>4      | ard<br>1 & 2.1.1 |  |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)<br>Soaking Period (days)<br>Curing Hours | 5 mm<br>12<br>Stand:<br>AS 1289 5.1<br>Estima<br>1.89<br>11.0<br>100.5<br>98.0<br>11.0<br>13.4<br>4.5<br>4<br>2 | ard<br>1 & 2.1.1 |  |  |




6

Mildura Laboratory Unit 2/48 Tenth Street Mildura Vic 3500 Phone: (03) 5023 2870 Email: james@civiltest.com.au Accredited for compliance with ISO/IEC 17025 - Testing



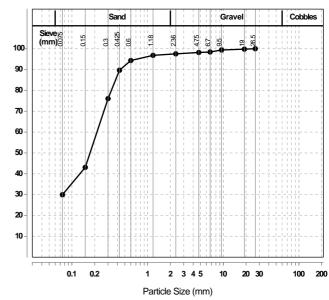
Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

Moisture Density Relationship



| Report Number:    | 3190369-3                                 |
|-------------------|-------------------------------------------|
| Issue Number:     | 1                                         |
| Date Issued:      | 07/08/2019                                |
| Client:           | Far West Local Health District            |
|                   | PO Box 457, BROKEN HILL NSW 2880          |
| Contact:          | Anya - Currie & Brown                     |
| Project Number:   | 3190369                                   |
| Project Name:     | Lot 914 Pitman Avenue BURONGA             |
| Project Location: | Lot 914 Pitman Avenue BURONGA             |
| Work Request:     | 4094                                      |
| Sample Number:    | 193-4094D                                 |
| Date Sampled:     | 31/07/2019                                |
| Dates Tested:     | 31/07/2019 - 02/08/2019                   |
| Sampling Method:  | AS1289 1.2.1 6.5.3 - Power auger drilling |
| Sample Location:  | TP2 (300mm-1500mm)                        |

| Particle Distribution (AS1289 3.6.1) |               |                  |            |            |                  |     |
|--------------------------------------|---------------|------------------|------------|------------|------------------|-----|
| Sieve                                | Passed %      | Passin<br>Limits | g          | Retained % | Retair<br>Limits |     |
| 26.5 mm                              | 100           |                  |            | 0          |                  |     |
| 19 mm                                | 100           |                  |            | 0          |                  |     |
| 9.5 mm                               | 99            |                  |            | 0          |                  |     |
| 6.7 mm                               | 98            |                  |            | 1          |                  |     |
| 4.75 mm                              | 98            |                  |            | 0          |                  |     |
| 2.36 mm                              | 98            |                  |            | 1          |                  |     |
| 1.18 mm                              | 97            |                  |            | 1          |                  |     |
| 0.6 mm                               | 94            |                  |            | 2          |                  |     |
| 0.425 mm                             | 90            |                  |            | 5          |                  |     |
| 0.3 mm                               | 76            |                  |            | 14         |                  |     |
| 0.15 mm                              | 43            |                  |            | 33         |                  |     |
| 0.075 mm                             | 30            |                  |            | 13         |                  |     |
| Atterberg Lim                        | it (AS1289 3. | 1.2 & 3.2        | 2.1 & 3    | .3.1)      | Min              | Max |
| Sample History                       |               | C                | Oven Dried |            |                  |     |
| Preparation Method                   |               | Dry Sieve        |            |            |                  |     |
| Liquid Limit (%)                     |               | 20               |            |            |                  |     |
| Plastic Limit (%)                    |               | 13               |            |            |                  |     |
| Plasticity Index (%)                 |               |                  | 7          |            |                  |     |
| Linear Shrink                        | age (AS1289   | 3.4.1)           |            |            | Min              | Max |
| Linear Shrinkage (%)                 |               |                  | 1.5        |            |                  |     |
| Cracking Crumbling Curling           |               |                  | Cracking   |            |                  |     |






Percent Passing

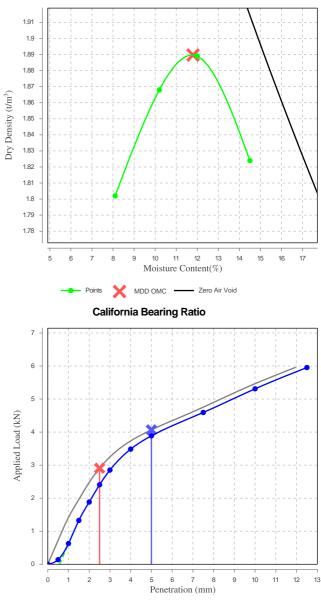
Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

**Particle Size Distribution** 



| Report Number:    | 3190369-3                                 |
|-------------------|-------------------------------------------|
| Issue Number:     | 1                                         |
| Date Issued:      | 07/08/2019                                |
| Client:           | Far West Local Health District            |
|                   | PO Box 457, BROKEN HILL NSW 2880          |
| Contact:          | Anya - Currie & Brown                     |
| Project Number:   | 3190369                                   |
| Project Name:     | Lot 914 Pitman Avenue BURONGA             |
| Project Location: | Lot 914 Pitman Avenue BURONGA             |
| Work Request:     | 4094                                      |
| Sample Number:    | 193-4094D                                 |
| Date Sampled:     | 31/07/2019                                |
| Dates Tested:     | 31/07/2019 - 06/08/2019                   |
| Sampling Method:  | AS1289 1.2.1 6.5.3 - Power auger drilling |
| Sample Location:  | TP2 (300mm-1500mm)                        |

| Dry Density - Moisture Relationship (AS                                                                                                                                                                                                                                                                                                                                                                       | \$ 1289 5.1.1 & 2.1                                                                                              | .1)               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Mould Type                                                                                                                                                                                                                                                                                                                                                                                                    | 1 LITRE                                                                                                          | 1 LITRE MOULD A   |  |
| Compaction                                                                                                                                                                                                                                                                                                                                                                                                    | Star                                                                                                             | Standard          |  |
| No. Layers                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 3                 |  |
| No. Blows / Layer                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                | 25                |  |
| Maximum Dry Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                       | 1.                                                                                                               | 1.89              |  |
| Optimum Moisture Content (%)                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                               | 12.0              |  |
| Retained on 19mm (%)                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                | 0.3               |  |
| Oversize Sieve (mm)                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                | 9                 |  |
| Oversize Material Wet (%)                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                   |  |
| Oversize Material Dry (%)                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                   |  |
| Dry Oversize density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                   |  |
| Method used to Determine Plasticity                                                                                                                                                                                                                                                                                                                                                                           | Estin                                                                                                            | nated             |  |
| Curing Hours                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                   |  |
| Moisture Content (AS 1289 2.1.1)                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                   |  |
| Moisture Content (%)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 6.2               |  |
| California Bearing Ratio (AS 1289 6.1.1                                                                                                                                                                                                                                                                                                                                                                       | & 2 1 1)                                                                                                         | Min Max           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | a 2.1.1)                                                                                                         | IVIIII IVIAX      |  |
| CBR taken at                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5 mm                                                                                                           |                   |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                   |  |
| CBR taken at                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5 mm                                                                                                           |                   |  |
| CBR taken at<br>CBR %                                                                                                                                                                                                                                                                                                                                                                                         | 2.5 mm<br>20                                                                                                     | ard               |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort                                                                                                                                                                                                                                                                                                                                                          | 2.5 mm<br>20<br>Stand                                                                                            | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD                                                                                                                                                                                                                                                                                                                          | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1                                                                             | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity                                                                                                                                                                                                                                                                                   | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima                                                                   | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                        | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89                                                           | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)                                                                                                                                                                                                        | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0                                                   | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)                                                                                                                                                                        | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5                                          | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)                                                                                                                                       | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5<br>93.0                                  | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)                                                                                                  | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5<br>93.0<br>11.0                          | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)                                                                 | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5<br>93.0<br>11.0<br>16.9                  | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)                                          | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5<br>93.0<br>11.0<br>16.9<br>4.5           | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)<br>Soaking Period (days)                 | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5<br>93.0<br>11.0<br>16.9<br>4.5<br>4      | ard<br>.1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)<br>Soaking Period (days)<br>Curing Hours | 2.5 mm<br>20<br>Stand<br>AS 1289 5.1<br>Estima<br>1.89<br>12.0<br>100.5<br>93.0<br>11.0<br>16.9<br>4.5<br>4<br>2 | ard<br>.1 & 2.1.1 |  |






Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

Email: james@civiltest.com.au

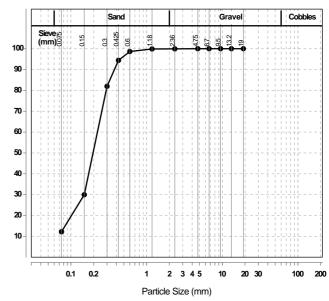
**Moisture Density Relationship** 



2.5 - - - Tangent ---- Corrected

| Report Number:    | 3190369-3                                 |
|-------------------|-------------------------------------------|
| Issue Number:     | 1                                         |
| Date Issued:      | 07/08/2019                                |
| Client:           | Far West Local Health District            |
|                   | PO Box 457, BROKEN HILL NSW 2880          |
| Contact:          | Anya - Currie & Brown                     |
| Project Number:   | 3190369                                   |
| Project Name:     | Lot 914 Pitman Avenue BURONGA             |
| Project Location: | Lot 914 Pitman Avenue BURONGA             |
| Work Request:     | 4094                                      |
| Sample Number:    | 193-4094G                                 |
| Date Sampled:     | 31/07/2019                                |
| Dates Tested:     | 31/07/2019 - 05/08/2019                   |
| Sampling Method:  | AS1289 1.2.1 6.5.3 - Power auger drilling |
| Sample Location:  | TP3 (1000mm-1500mm)                       |

| Sieve                      | Passed %      | Passing<br>Limits |            | Retained % | Retained<br>Limits |     |
|----------------------------|---------------|-------------------|------------|------------|--------------------|-----|
| 19 mm                      | 100           |                   |            | 0          |                    |     |
| 13.2 mm                    | 100           |                   |            | 0          |                    |     |
| 9.5 mm                     | 100           |                   |            | 0          |                    |     |
| 6.7 mm                     | 100           |                   |            | 0          |                    |     |
| 4.75 mm                    | 100           |                   |            | 0          |                    |     |
| 2.36 mm                    | 100           |                   |            | 0          |                    |     |
| 1.18 mm                    | 100           |                   |            | 0          |                    |     |
| 0.6 mm                     | 99            |                   |            | 1          |                    |     |
| 0.425 mm                   | 94            |                   |            | 4          |                    |     |
| 0.3 mm                     | 82            |                   |            | 12         |                    |     |
| 0.15 mm                    | 30            |                   |            | 52         |                    |     |
| 0.075 mm                   | 12            |                   |            | 18         |                    |     |
| Atterberg Lin              | nit (AS1289 3 | .1.2 & 3.2        | 2.1 & 3    | .3.1)      | Min                | Max |
| Sample History             |               |                   | Air Dried  |            |                    |     |
| Preparation Method         |               | Dry Sieve         |            |            |                    |     |
| Liquid Limit (%)           |               | Not Obtainable    |            |            |                    |     |
| Plastic Limit (%)          |               | Not Obtainable    |            |            |                    |     |
| Plasticity Index (%)       |               | N                 | on Plastic |            |                    |     |
| Linear Shrinl              | kage (AS1289  | 3.4.1)            |            |            | Min                | Max |
| Linear Shrinkage (%)       |               | 0.0               |            |            |                    |     |
| Cracking Crumbling Curling |               |                   |            | None       |                    |     |


CIVIL ESTING & GEOTECHNICAL CONSULTANTS SOIL TESTING & GEOTECHNICAL CONSULTANTS Civiltest Pty Ltd Mildura Laboratory Unit 2/48 Tenth Street Mildura Vic 3500 Phone: (03) 5023 2870 Email: james@civiltest.com.au Accredited for compliance with ISO/IEC 17025 - Testing



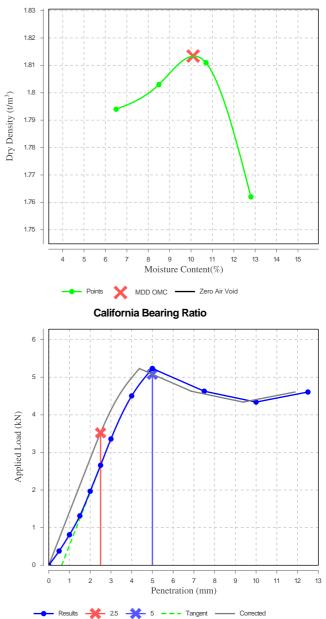
Percent Passing

Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

**Particle Size Distribution** 



| Report Number:<br>Issue Number:<br>Date Issued: | <b>3190369-3</b><br>1<br>07/08/2019       |
|-------------------------------------------------|-------------------------------------------|
| Client:                                         | Far West Local Health District            |
|                                                 | PO Box 457 , BROKEN HILL NSW 2880         |
| Contact:                                        | Anya - Currie & Brown                     |
| Project Number:                                 | 3190369                                   |
| Project Name:                                   | Lot 914 Pitman Avenue BURONGA             |
| Project Location:                               | Lot 914 Pitman Avenue BURONGA             |
| Work Request:                                   | 4094                                      |
| Sample Number:                                  | 193-4094G                                 |
| Date Sampled:                                   | 31/07/2019                                |
| Dates Tested:                                   | 31/07/2019 - 06/08/2019                   |
| Sampling Method:                                | AS1289 1.2.1 6.5.3 - Power auger drilling |
| Sample Location:                                | TP3 (1000mm-1500mm)                       |


| Dry Density - Moisture Relationship (AS                                                                                                                                                                                                                                                                                                                                           | 1289 5.1.1 & 2.1                                                                                                  | .1)              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|--|
| Mould Type                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | 1 LITRE MOULD A  |  |
| Compaction                                                                                                                                                                                                                                                                                                                                                                        | Star                                                                                                              | Standard         |  |
| No. Layers                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | 3                |  |
| No. Blows / Layer                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                 | 25               |  |
| Maximum Dry Density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                           | 1.                                                                                                                | 1.81             |  |
| Optimum Moisture Content (%)                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                | 10.0             |  |
| Retained on 19mm (%)                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                 | 0.0              |  |
| Oversize Sieve (mm)                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                 | 9                |  |
| Oversize Material Wet (%)                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                  |  |
| Oversize Material Dry (%)                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                  |  |
| Dry Oversize density (t/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   |                  |  |
| Method used to Determine Plasticity                                                                                                                                                                                                                                                                                                                                               | Estin                                                                                                             | nated            |  |
| Curing Hours                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                  |  |
| Moisture Content (AS 1289 2.1.1)                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |                  |  |
| Moisture Content (%)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   | 1.8              |  |
| California Bearing Ratio (AS 1289 6.1.1                                                                                                                                                                                                                                                                                                                                           | 8, 2, 1, 1)                                                                                                       | Min Max          |  |
|                                                                                                                                                                                                                                                                                                                                                                                   | $\alpha (2, 1, 1)$                                                                                                | Min Max          |  |
| CBR taken at                                                                                                                                                                                                                                                                                                                                                                      | 2.5 mm                                                                                                            |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |                  |  |
| CBR taken at                                                                                                                                                                                                                                                                                                                                                                      | 2.5 mm                                                                                                            |                  |  |
| CBR taken at<br>CBR %                                                                                                                                                                                                                                                                                                                                                             | 2.5 mm<br><b>25</b>                                                                                               | ard              |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort                                                                                                                                                                                                                                                                                                                              | 2.5 mm<br><b>25</b><br>Standa                                                                                     | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD                                                                                                                                                                                                                                                                                              | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1                                                                              | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity                                                                                                                                                                                                                                                       | 2.5 mm<br>25<br>Standa<br>AS 1289 5.1<br>Estima                                                                   | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )                                                                                                                                                                                                            | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81                                                            | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)                                                                                                                                                                            | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0                                                    | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)                                                                                                                                            | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0                                           | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)                                                                                                           | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0<br>99.0                                   | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)                                                                      | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0<br>99.0<br>10.0                           | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)                                     | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0<br>99.0<br>10.0<br>14.4                   | ard<br>1 & 2.1.1 |  |
| CBR taken at<br>CBR %<br>Method of Compactive Effort<br>Method used to Determine MDD<br>Method used to Determine Plasticity<br>Maximum Dry Density (t/m <sup>3</sup> )<br>Optimum Moisture Content (%)<br>Laboratory Density Ratio (%)<br>Laboratory Moisture Ratio (%)<br>Moisture Content at Placement (%)<br>Moisture Content Top 30mm (%)<br>Mass Surcharge (kg)              | 2.5 mm<br>25<br>Stand<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0<br>99.0<br>10.0<br>14.4<br>4.5            | ard<br>1 & 2.1.1 |  |
| CBR taken at   CBR %   Method of Compactive Effort   Method used to Determine MDD   Method used to Determine Plasticity   Maximum Dry Density (t/m <sup>3</sup> )   Optimum Moisture Content (%)   Laboratory Density Ratio (%)   Laboratory Moisture Ratio (%)   Moisture Content at Placement (%)   Moisture Content Top 30mm (%)   Mass Surcharge (kg)   Soaking Period (days) | 2.5 mm<br>25<br>Stand:<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0<br>99.0<br>10.0<br>14.4<br>4.5<br>4      | ard<br>1 & 2.1.1 |  |
| CBR taken at   CBR %   Method of Compactive Effort   Method used to Determine MDD   Method used to Determine Plasticity   Maximum Dry Density (t/m <sup>3</sup> )   Optimum Moisture Content (%)   Laboratory Density Ratio (%)   Moisture Content at Placement (%)   Moisture Content Top 30mm (%)   Mass Surcharge (kg)   Soaking Period (days)   Curing Hours                  | 2.5 mm<br>25<br>Stand:<br>AS 1289 5.1<br>Estima<br>1.81<br>10.0<br>100.0<br>99.0<br>10.0<br>14.4<br>4.5<br>4<br>2 | ard<br>1 & 2.1.1 |  |





Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

**Moisture Density Relationship** 



| Report Number:    | 3190369-3                        |
|-------------------|----------------------------------|
| Issue Number:     | 1                                |
| Date Issued:      | 07/08/2019                       |
| Client:           | Far West Local Health District   |
|                   | PO Box 457, BROKEN HILL NSW 2880 |
| Contact:          | Anya - Currie & Brown            |
| Project Number:   | 3190369                          |
| Project Name:     | Lot 914 Pitman Avenue BURONGA    |
| Project Location: | Lot 914 Pitman Avenue BURONGA    |
| Work Request:     | 4094                             |
| Dates Tested:     | 31/07/2019 - 31/07/2019          |



SOIL TESTING & GEOTECHNICAL CONSULTANTS Civiltest Pty Ltd Mildura Laboratory Unit 2/48 Tenth Street Mildura Vic 3500 Phone: (03) 5023 2870 Email: james@civiltest.com.au Accredited for compliance with ISO/IEC 17025 - Testing





Approved Signatory: James Taylor Laboratory Manager NATA Accredited Laboratory Number: 10784

C

| Moisture Content A | S 1289 2.1.1    |                  |          |
|--------------------|-----------------|------------------|----------|
| Sample Number      | Sample Location | Moisture Content | Material |
| 193-4094B          | TP1 (500mm)     | 5.0 %            | **       |
| 193-4094C          | TP1 (1000mm)    | 5.1 %            | **       |
| 193-4094E          | TP2 (500mm)     | 6.1 %            | **       |
| 193-4094F          | TP2 (1000mm)    | 6.0 %            | **       |
| 193-4094H          | TP3 (500mm)     | 5.6 %            | **       |
| 193-40941          | TP3 (1000mm)    | 2.8 %            | **       |